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Solitary waves, cnoidal waves, and shock waves can be computed by solving a
nonlinear eigenvalue problem, which in discretized form is a system of nonlinear alge-
braic equations. Unfortunately, many such systems are singular because the solution
is not unique until one or more additional constraints are imposed. For example, if the
waves are translationally invariant and u(X) is a solution, then so also is u(X + �)

for arbitrary �. To obtain a unique solution, one must impose an additional condi-
tion to reduce the one-parameter family of solutions by constraining �. We describe
five methods for coping with such singular systems: (i) reformulation of the problem,
(ii) deleting residuals, (iii) Keller’s bordered matrix scheme, (iv) QR-factored, overde-
termined Newton iteration, and (v) pseudoinverse-Newton iteration. We illustrate
these ideas using the cnoidal waves of the Korteweg–deVries equation, the traveling
shocks of the Korteweg–deVries-Burgers equation, and the weakly nonlocal solitary
waves of the nonlinear equatorial beta-plane equations. Finite difference, Fourier and
rational Chebyshev pseudospectral methods, and spectrally upgraded finite differ-
ences are applied. Reformulation and deleting residuals are the cheapest strategies,
but the QR-factored Newton iteration is needed for the shock waves, which lack the
symmetry of the other two wave species. c© 2002 Elsevier Science (USA)

Key Words: solitary wave; nonlinear algebraic equations; Newton’s iteration; spec-
trally upgraded finite differences.

1. INTRODUCTION

If a nonlinear wave is assumed to travel at a phase speed c, then the time-dependent
partial differential equation can be reduced to a nonlinear differential eigenproblem by the
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TABLE I

Comparison of Model Equations

Property KdV KdV–Burgers Rossby

Wave type Cnoidal Shock Weakly nonlocal soliton
Symmetry Symmetric Unsymmetric � is symmetric in x, y
No. of zero eigenvalues 2 1 ∞
Cheapest method, fd Deleted residual QR Deleted residual
Cheapest method, spectral Reformulation Deleted residual —
Unsuccessful methods Reformulation Reformulation, fd deleted Reformulation

(fd only) Residual, and fd Keller’s
bordered

substitution ∂/∂t → −c∂/∂ X, ∂/∂x → ∂/∂ X , where X ≡ x − ct is a new spatial coordi-
nate that moves with the wave. In this moving reference frame, the wave is steady. For
example, the Korteweg–deVries equation of water wave theory becomes, with subscripts
denoting differentiation with respect to the subscripted variable,

ut + uux + uxxx → u X X X + (u − c)u X = 0 [KdV ODE]. (1)

The travelling wave solutions of the KdV ODE are solitary waves and cnoidal waves as
found analytically by Korteweg and deVries more than a century ago. But the KdV equation
is merely an example; a vast number of other time-dependent wave equations have similar
traveling-wave solutions and may similarly be reduced to differential eigenproblems. In
this article, we use a shock, a cnoidal wave, and a nonlocal solitary wave of three different
model equations to illustrate this diversity (Table I).

The usual boundary conditions are either spatial periodicity or decay-to-a-constant. Un-
fortunately, these boundary conditions plus the differential equation are usually insufficient
to specify a unique solution. For example, if the differential equation has coefficients which
are independent of the spatial coordinates, then any solution can be translated in position
by an arbitrary amount �, and u(x − �) still solves both the differential equation and the
periodic or decay boundary conditions. However, there may be other or even an infinite
number of additional degrees of freedom.

For example, the KdV equation has an additional dilational degree of freedom so that two
additional equations must be appended to the usual differential equation/boundary condi-
tions combination in order to specify a unique solution. An even more dramatic example is
the Rossby wave in geophysical fluid dynamics. Small-amplitude perturbation theory shows
that a Rossby wave is unique only after specification of an arbitrary zonally averaged mean
current, whether in so-called quasigeostrophic models [24, 30] or the shallow-water wave
equations for equatorially trapped waves [13] (discussed further below). Since the mean
current U (y) can be specified by an infinite series of orthogonal functions, it is equivalent
to an infinite number of additional constraints.

In the discretized problem, these degrees of freedom are zero eigenvalues of the Jacobian
matrix of the nonlinear system of algebraic equations.
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2. NEWTON’S ITERATION

Finite-difference and pseudospectral methods convert a differential equation into a system
of nonlinear algebraic equations, which is written as

	r(	u) = 	0, (2)

where the elements of 	r are the residuals of the differential equation plus the discretization
of whatever additional constraints are needed to define a unique solution. The elements of
	u may be either Fourier or Chebyshev coefficients or the values of u(x) at the points of the
computational grid, as in finite-difference schemes. All of the algorithms for solving the
discretized system are variations on Newton’s iteration, also called the Newton–Ralphson
method.

Let 	u(m) denote the approximation to the solution of 	r = 	0 after the mth iteration. Ex-
panding each component of 	r as a multivariable Taylor series about 	u = 	u(m) and discarding
all but the linear and constant terms gives a linear matrix equation whose solution defines
the next iterate, 	u(m). Generalizing slightly to include the “underrelaxation factor” � , the
Newton iteration is

	u(m+1) = 	u(m) − � 	�, (3)

where 	� is the solution of

		J 	� = 	r(	u(m)
)
. (4)

The elements of the Jacobian matrix 		J are

Ji j ≡ ∂ri

∂u j
. (5)

The standard Newton iteration sets � = 1. If the first guess 	u(0) is too far from the root,
Newton’s iteration will diverge. Both theoretically and empirically, the domain of conver-
gence can be greatly expanded by “underrelaxation,” that is, by choosing � < 1.

We employed a simple line search to optimize the underrelaxation parameter � . The
residual 	r(	u) was evaluated for

� j ≡ 1/2( j−1)/2, j = 1, 2, . . . jmax (6)

for some jmax. The final Newton’s correction at the mth iterate used whatever � j gave the
smallest ‖	r‖. Since the cost of factoring the Jacobian is an order of magnitude greater than
the cost of a single evaluation of 	r(	u), this line search strategy increases the cost per iteration
only slightly. In the “end game” where 	u is very close to the minimum, the search will revert
to the standard Newton’s iteration.

If k additional constraints are required for uniqueness, then the Jacobian will be a rect-
angular (n + k) × n matrix. However, Newton’s iteration is still well defined. The only
complication is that both the linear algebra problem at each iteration and the nonlinear sys-
tem itself cannot be solved in the classical sense of simultaneously making all components
of the residual equal to zero. We can, however, minimize the norm of 	r by applying a QR
factorization and thus compute the correction 	� and 	u itself in a least-squares sense. The
total error still goes to zero rapidly as the number of grid points n is increased.
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3. METHODS FOR SINGULAR SYSTEMS OF NONLINEAR EQUATIONS

In this article, we use five different strategies for coping with the difficulty that a straight-
forward discretization gives a singular Jacobian matrix for all three of the wave species
discussed here (and many other types of waves as well). These are listed along with their
costs for a dense matrix in Table II. With a finite-difference discretization, the Jacobian
matrix is sparse, but the relative ordering of the methods by cost from cheapest (top) to
most expensive (bottom) is not altered.

The “reformulation” and “deleted residuals” strategy both modify the discretized prob-
lem so as to obtain a nonsingular system with the same number of equations as unknowns;
the standard Newton iteration then applies. The other three algorithms employ linear alge-
bra methods (bordered matrix, QR factorization, and pseudoinverse, respectively) to solve
the matrix problem at each Newton step when the Jacobian matrix is either singular or
rectangular.

3.1. Reformulation

If u(x) is symmetric with respect to its maximum, translational invariance can be sup-
pressed by designing the numerical methods to impose symmetry with respect to x = 0. This
forces the peak to be at the origin; the symmetry-assuming discretization gives a nonsingular
system of algebraic equations.

In the Appendix, we show how to construct high-order finite differences that impose sym-
metry. For spectral methods, the analogous technique is to restrict the basis set to symmetric
functions only—for a Fourier series, this means using a basis of cosine functions only. For
both finite-difference and pseudospectral algorithms, the grid is restricted to x ≥ 0 only.

For the unsymmetric shocks of the Korteweg–deVries–Burgers equation, alas, this sort
of reformulation is useless.

3.2. Deleted Residuals

The idea is to simply replace one of the usual finite-difference or pseudospectral residual
conditions by an explicit constraint, such as u(0) = 1. For the Korteweg–deVries cnoidal
wave and equatorial Rossby solitary waves, this succeeds, but it fails for the unsymmetric
shocks of the Korteweg–deVries–Burgers equation.

3.3. Keller’s Bordered Matrix Algorithm

Keller has developed a bordered matrix algorithm for singular rectangular matrices [20].
For expository simplicity, we explain his ideas for the case of a single zero eigenvalue of the

TABLE II

Five Strategies for Singular Nonlinear Algebraic Systems

Method Cost for dense matrix Matrix type

Reformulation (2N 3/3) Square/nonsingular
Deleted residuals 2(N 3/3) Square/nonsingular
Keller bordered matrix 2(N 3/3) (+) Square/singular
QR overdetermined 4(N 3/3) Rectangular/nonsingular
SVD 8(N 3/3) Square/singular
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Jacobian matrix, but as he shows in [20], the generalization to an arbitrary number of zero
eigenvalues is so straightforward that he expressed surprise that it had not been previously
published.

The Keller/Newton method is identical to the standard iteration except for how 		J 	� = 	r
is solved. First, under the assumption of a single zero eigenvalue, or equivalently, that the
Jacobian matrix has a nullspace of dimension one, partition the system as∣∣∣∣∣

		A 	B
	CT D

∣∣∣∣∣
∣∣∣∣ 	x

z

∣∣∣∣ =
∣∣∣∣ 	g
h

∣∣∣∣, (7)

where 		A is a square matrix and 	B and 	C are column vectors, all of dimension (N − 1). (The
N th row and column are the “border” of the (N − 1) × (N − 1) matrix 		A, so algorithms
based on such a partition are “bordered matrix” methods.)

Next, compute the LU factorization of the upper left block 		A:

		L 		U = 		A. (8)

Then, do one triangular backsolve to compute a vector 	U 1:

		L 	U 1 = 	B. (9)

Let 	� denote the Jacobian eigenvector of zero eigenvalue. This is found by performing a
triangular backsolve as

	� ≡
∣∣∣∣∣
	�upper

−1

∣∣∣∣∣, 		U 	�upper = 	U 1. (10)

The correction is then, with � as an arbitrary constant,

	� =
∣∣∣∣∣
	�upper

1

∣∣∣∣∣ + � 	�,
		L 		U 	�upper = 	g − 	B, (11)

where 	g is the upper (N − 1) part of 	r and 	B is the upper (N − 1) elements of the N th
column of the Jacobian matrix. The constant � cannot be determined from the singular
matrix problem alone. However, we can exploit this extra degree of freedom to impose at
each iteration the uniqueness-needed constraint, such as u(0) = 1.

The cost of Newton’s iteration with bordered-matrix computation is only slightly more
expensive than the standard Newton iteration, the difference being O(N 2) for a dense matrix
versus an overall cost of O([2/3]N 3). This is true even when there are m zero eigenvalues
instead of one, and 	B and 	C must be generalized to m × (N − 1) matrices, and similarly
for the other components.

The flaw in this bordered matrix algorithm is that it implictly assumes that the upper left
block 		A is nonsingular even though the full matrix 		J has a zero eigenvalue. Generically,
this assumption is true, and Keller’s bordered matrix strategy has been widely applied with
success.

Unfortunately, discretizations of differential equations are not necessarily “generic” or
“random.” For the finite-difference discretization of the Korteweg–deVries–Burgers equa-
tion, alas, the bordered matrix method fails because the subblock 		A is singular, too. We
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reordered rows and columns so as to vary the elements that were deleted, but this did not
help. The pseudoinverse, which does not make any a priori assumptions, succeeded in
solving the square-but-singular Korteweg–deVries–Burgers matrix problem.

3.4. QR-Overdetermined Newton Iteration

The QR–Newton scheme applies when the Jacobian matrix is rectangular. Unfortunately,
the QR factorization of the Jacobian matrix is twice as expensive as the LU factorization of
a square matrix when the matrices are dense, and at least four times more costly for banded
matrices. Still, the algorithm never failed in our tests.

The strategy of retaining all the finite-difference residuals and all the constraints and
minimizing the residual of the formally overdetermined system is the safe, logical strategy.
There is, in contrast, no general theory for how the computation will be corrupted by
junking residuals at selected points, and indeed “deleted residuals” fails for the shock
waves discussed later.

A system with more equations than unknowns gives a rectangular Jacobian matrix. It
is still possible to solve the matrix problem in a least-squares sense by QR factorization.
The orthogonal matrix 		Q is computed only implicitly as the product of a series of rank-one
Householder transformations. (Explicit computation of 		Q more than doubles the cost but
does reduce round-off error in the backsolve step; it proved unnecessary here.) The other
factor 		R is triangular so that the solution to

		J 	� = 	r (12)

may be obtained cheaply from

		RT { 		R	�} = 		J T 	r , (13)

where the backsolves cost O(N 2) operations each because 		R is triangular. The round-off
error of the “seminormal equation” (13) is often reduced, in applications to linear overde-
termined systems, by one step of iterative refinement. This is unnecessary here because the
Newton iteration effectively does the same job of “refinement.”

An obvious alternative strategy is to multiply the original overdetermined problem by
the transpose of the Jacobian to obtain the so-called “normal” equations

		J T 		J 	� = 		J T 	r [normal equations], (14)

where superscript “T ” denotes the matrix transpose. The “squared Jacobian” matrix

		J ≡ 		J T 		J (15)

is a square, N × N symmetric matrix. In exact arithmetic, this alternative is equivalent to
the QR factorization; 		R is just the transpose of a Cholesky factor of J ; that is,

		RT 		R = 		J T 		J . (16)

It follows that, ignoring round-off error, the QR and normal equation strategies always
give the same answer. However, the QR factorization employs only orthogonal matrices
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and therefore is much more resistant to disastrous accumulation of round-off error than the
normal equations. Both compute corrections 	� which minimize the L2 norm of the residual
of the matrix problem (12), ‖ 		J 	� = 	r‖.

The normal equations make the following definition precise:

DEFINITION 3.1 (Formally Overdetermined Determinate System). A system of alge-
braic nonlinear equations 	r(	u) is said to be “formally overdetermined but determinate” if

1. The number of equations (length of 	r ) is greater than the number of unknowns, the
elements of 	u.

2. J ≡ 		J T 		J is a nonsingular matrix, that is, all its singular values are greater than zero.

The QR–Newton iteration converges to a minimum �min(N ) of the norm of the residual
vector 	r(	u). The right-hand side of the normal equations, 		J 	r , is the gradient of (1/2)� 2

where � ≡ ‖	r‖; this gradient is the zero vector at a minimum of � . From this and using the

invertibility of 		J T 		J embodied in the definition of formally overdetermined determinate, one
can show that, sufficiently close to the minimum that the linearization about the mimimum
is legitimate, the iteration reduces to 	�(m+1) ≈ (1 − �)	�(m). This shows that the iteration is
an attractor and the correction 	� is converging to zero.

Also, costs of both the QR and normal equation methods are the same—and much
more expensive than the linear algebra expenses of the deleted residuals approach. For
a dense matrix, both the QR factorization and the symmetry-exploiting creation of the
squared Jacobian matrix followed by a Cholesky factorization cost O([4/3]N 3) floating-
point operations for the factorization and O(4N 2) operations per backsolve, exactly double
the corresponding costs with an LU factorization. For banded matrices, the ratio of QR/LU
factorization costs is much higher because, as is obvious from the normal equations, the
QR method effectively doubles the bandwidth, and the factorization cost rises quadratically
with bandwidth. The QR–Newton iteration was six times more expensive in execution time
for the KdV problem and fifteen times more costly for the equatorial wave problem with
only an infinitesimal improvement in accuracy over the “deleted residuals” strategy.

3.5. Pseudoinverse/SVD

All matrices can be given a singular value decomposition (SVD) in the form

		J = 		U 		S 		V T , (17)

where 		S is a diagonal matrix with �j , the “singular values,” on the main diagonal and where

the columns of 		V are orthogonal to each other, as are the columns of 		U . The pseudoinverse,
or “Moore–Penrose pseudoinverse,” is defined as

		J+ = 		V 		S
+ 		U T , (18)

where

�+ ≡
{

1/� if �0

0 if � = 0.
(19)

If all the singular values �j are nonzero, the pseudoinverse is the usual inverse. However,
when 		J is singular, then one or more singular values is zero. The pseudoinverse nevertheless
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generates a particular solution:

		J 	� = 	f → 	�p = 		J+ 	f . (20)

The general solution is obtained by adding copies of each of the columns of 		V associated
with zero singular values to the particular solution. The arbitrary constants multiplying
these 		V columns can be chosen to enforce the constraints, such as the condition u(0) = 1
employed with the Korteweg–deVries–Burgers shocks below.

The pseudoinverse/SVD method is powerful because it always succeeds. We obtained
rapid convergence from a square, singular Jacobian matrix for the Korteweg–deVries–
Burgers shocks when Keller’s bordered matrix algorithm failed.

The drawback of the pseudoinverse method is that it is very expensive. The cost of a full
SVD with explicit computation of all factors is O(13N 3) for a dense matrix of dimension
N , or in other words about 20 times the cost of LU factorization. Fortunately, the algorithm
can be modified to avoid explicit computation of the factors to reduce the cost to only
O([8/3]N 3), but this is still four times the cost of an LU factorization.

The pseudoinverse is useful only when the number of zero eigenvalues is not known. The
other four strategies implicitly assume that the waves are sufficiently well understood that
one knows precisely how many residuals to delete or how many extra rows to add to obtain
a rectangular matrix of full rank (for the QR factorization), or how many rows and columns
are the “border” in Keller’s scheme. As costly as it is, the pseudoinverse can succeed when
the physics is murky because it does not require any a priori assumptions.

4. KORTEWEG–DEVRIES CNOIDAL WAVES

4.1. KdV Free Parameters

KdV steadily propagating solutions which decay exponentially for large |X | on X ∈
[−∞, ∞] are called “solitary waves” or “solitons”; the spatially periodic solutions are
dubbed “cnoidal waves.” Large-amplitude cnoidal waves have a single tall narrow peak on
each spatial period which is well approximated by the sech2 shape of the solitary wave;
solitons are really just the limit of cnoidal waves for large amplitude with fixed spatial period.

THEOREM 4.1 (KdV ODE Symmetries and Eigenfunctions). If u(x; c, P) is a solution
to the KdV ODE (1) for a given phase speed c and a given spatial period P (which could
be infinite), then a solution is also given by

(i) v(X; c, P) ≡ u(X + �; c, P), ∀� [translational invariance], (21)

(ii) w(X; c, P) ≡ −� + (1 + �)u
(
[1 + �]1/2 X; c, P

)
, ∀� [dilational invariance].

(22)

Equivalently, if u(X; c, P) is a spatially periodic solution to the KdV ODE, the differential
equation linearized about u,

�X X X + (u − c)�X + u X� = 0, (23)

has two eigensolutions (of zero eigenvalue):

1. �1(X) ≡ u X .
2. �2(X) ≡ −1 + u(x) + (X/2)u X .
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FIG. 1. (Left) The zero-mean KdV cnoidal wave for c = 0.08; the constant in the Fourier series is zero and
the coefficient of cos(X) is 5. The soliton approximation, u ≈ −3.728 + 11.431 sech2 (0.976 X), is plotted as a
dashed curve in the left panel, but this is graphically indistinguishable from the periodic solution. This confirms
the claim that the solitary wave is the large-amplitude limit of the spatially periodic cnoidal waves. (Middle) The
translational eigenfunction, �1 = du/d X . (Right) The dilational eigenfunction, �2 = −1 + u + (X/2) du/d X .

The first half of the theorem is proved by substituting the new solutions into the ODE
to verify that they are indeed solutions. The eigenfunctions follow by specializing to new
solutions, which differ by arbitrarily small translations or dilations from the solutions which
generate them.

A more comprehensive discussion of parity and other symmetries and their numerical
consequences is given in Chap. 8 of [12] (see also [1, 18, 28]).

Figure 1 illustrates the KdV cnoidal wave for a typical case. The middle and right panels
show the translational and dilational eigenfunctions of the linearized KdV equation (23);
the discretization of this linearized ODE is the Jacobian matrix (without constraints and
therefore singular!).

4.2. Implicit Constraints in Finite-Difference and Spectral Methods

The assumption that the KdV solution is symmetric with respect to X = 0 implicitly
removes the translational invariance: If the point of symmetry is fixed at the origin, the
freedom to shift the cnoidal wave left or right is destroyed.

Unfortunately, one additional constraint must be explicitly imposed. When the KdV
equation is solved by a pseudospectral method using a Fourier series, as in [6, 10], the
easiest constraint is ∫ P

0
u dx = 0, (24)

where P is the spatial period. The symmetry condition is imposed by using only a cosine
basis; the integral constraint is imposed by omitting the constant from the Fourier series so
that the basis functions are {cos([2	/P]X), cos(2[2	/P]X), . . .}.
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Thus, reformulation of the problem is completely successful in eliminating the singularity
for the Fourier pseudospectral method. Futhermore, the size of the discrete basis is halved
(from sines, cosines, and constant to just cosines). Since the pseudospectral Jacobian matrix
is dense, this reduces costs by a factor of eight!

In finite-difference methods, reformulation is only partially successful. As explained in
the Appendix, it is easy to built symmetry into differences, even high-order ones, and thus
suppress the translational mode. However, it is necessary to explicitly impose an additional
constraint.

The integral constraint can be imposed by adding one dense row of the Jacobian matrix
with elements that are all one. This is equivalent to approximating the integral by the rectan-
gle rule; for a periodic integrand, the rectangle rule has an error that decreases exponentially
fast with the number of grid points.

The cost of the LU factorization of a banded matrix with one full row is only slightly
larger than the cost of a strictly banded matrix of the same size and bandwidth. In the
“deleted residuals” scheme, the integral constraint is cheap to impose.

Unfortunately, when the Jacobian matrix is multiplied by its transpose, as required by the
QR–Newton algorithm, the resulting square matrix,J , is dense. Thus, the integral constraint
completely wrecks the sparsity of the QR-factored Newton method. We experimented with
approximating J by a banded matrix, but the banded approximation to J was singular.

Fortunately, a unique solution can also be obtained by specifying the maximum amplitude
of the wave, instead of the integral:

u(X = 0) = umax. (25)

Sixth-order polynomial interpolation, consistent with the sixth-order approximation of third
derivatives, gives

umax −
{

1225

1024
u1 − 245

1024
u2 + 49

1024
u3 − 5

1024
u4

}
= 0. (26)

Imposing this as r1, the first element of the vector 	r , gives a banded Jacobian matrix. The
other elements of 	r are defined by

r j+1 = r̃ j ≡ {u X X X + (u − c)u X }|X=X j , (27)

where the derivatives are evaluated by finite-difference approximations given in the
Appendix.

4.3. Numerical Results: KdV Equation

With a finite-difference discretization, the deleted residual strategy is much cheaper than
the QR-overdetermined Newton iteration. Nevertheless, since this QR–Newton has not been
applied before, its performance is interesting.

Figure 2 shows a typical QR–Newton iteration for the KdV equation. For a given N , there
is an inescapable finite-difference error, but in a conventional problem, the error in solving
the discretized algebraic system can be reduced to machine precision. Here, however, the
residual of the nonlinear algebraic equations reaches a finite minimum after a handful of
iterations.
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FIG. 2. (Left) The norm of the residual, � , versus iteration number for a typical KdV case. For a standard
Newton’s iteration where the number of equations equals the number of unknowns, � would decrease to machine
precision. Here, however, it flattens at a finite minimum where �min = 7.7E − 5. (Right) Solid-line-with-diamonds:
Error in the pseudospectral method versus the number of collocation points or degrees of freedom. Open circles:
Minimum of the L2 norm of the finite-difference/QR residual, � , versus the number of grid points, N . Solid
circles (upper curve): The L2 norm of the difference between the exact solution (Appendix D of [10]) and
the finite-difference-with-constraint numerical solution. (Thin dashed curve) A constant multiplied by N 6; the
error asymptotes to this, consistent with the expected sixth-order accuracy of the nine-point centered-difference
approximation. Note that the error of the pseudospectral method with 10 grid points (or cosines) is smaller
than the error of the sixth-order finite-difference method with 40 grid points! KdV cnoidal wave of phase speed
c = 0.08179 and P = 2	 with the constraint u(0) = 7.07031. (These correspond to a solution with zero mean
and lowest coefficient a = 5.)

Nevertheless, if N is sufficiently large, the least-squares solution to the overdetermined
algebraic system, as found by the QR factorization, is a good approximation to the solution
of the differential equation. The two upper curves of Fig. 2 confirm the expected sixth-order
convergence of the finite-difference approximation to the exact solution. Although the for-
mally overdetermined (N + 1) × N linear algebra problem is satisfied only approximately
at each iteration, the QR–Newton algorithm nevertheless gives very accurate results that
improve with N at the expected rate.

The bottom curve (open circles) shows that for a given number of grid points N , the
QR–Newton iteration converges to a minimum residual norm, �min(N ). Remarkably, the
straight-line appearance of the graph on this log-linear plot shows that �min is decreasing
exponentially with N . The error u(X) − uapprox(X; N ), in contrast, decreases only at a
sixth-order rate and is orders-of-magnitude larger except for rather small N .

As the amplitude umax increases, one needs more and more grid points to achieve a given
accuracy, but the qualitative behavior of both error curves and �min(N ) do not change.

The error for the much faster deleted residual strategy is not graphed separately because
it is visually indistinguishable from the error ‖u − uapprox‖ for the QR–Newton iteration.
The deleted residual strategy is preferable because in Matlab on our Dell workstation, it
was typically six times faster and required less than one-tenth as many operations as the
QR-factored Newton scheme.
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5. EQUATORIAL ROSSBY WEAKLY NONLOCAL SOLITARY WAVES

The theory of equatorial Rossby solitary waves has been developed and reviewed in a
long series of articles and books [3, 8, 10, 25]. For small amplitude, the analytic perturbation
theory of [3, 5] is accurate in predicting the “core” of the solitary waves.

Higher latitudinal mode solitary waves are “weakly nonlocal”: the core of the coherent
structure does not decay to zero at large distances from the maximum of the wave, but
instead decays to a small-amplitude, quasi-sinusoidal oscillation. The existence of nonlocal
equatorial waves was first predicted in [7]. The author’s reviews and monograph [9, 11,
10] describe the general theory of nonlocal solitary waves and their spatially periodic
generalizations; Figure 3 illustrates the mode-three Rossby nonlocal soliton for a typical
case.

The equatorial waves solve the nonlinear shallow-water wave equations on the so-called
equatorial beta-plane.

(u − c)u X + vuy − yv + �X = 0, (28)

(u − c)vX + vvy + yu + �y = 0, (29)

−c�X + {u�}X + {v�}y = 0, (30)

where c is the phase speed, � is the total depth of the fluid, u and v are the nondimensional
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FIG. 3. (Top) Contours of the height anomaly �′ (� > 0 is solid; �′ < 0 is dashed) with superimposed
horizontal velocity vectors. (The anomaly �′ ≡ � − 1 where � is the total fluid depth.) Only the upper right
quadrant of the X–y plane is shown because of the fourfold symmetry of all fields. (Bottom) A cross section of
the north–south current at y = 1.125. The “far field” oscillations which make the wave “weakly nonlocal” are
invisible on the top graph, which explains the adjective “weakly.” The cross section shows clearly that the flow is
not decaying to zero, but rather to small-amplitude oscillations, which is the “nonlocal” part.
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east–west and north–south currents, X = x − ct is longitude in a frame of reference that is
moving with the wave, and y is nondimensional latitude. The parity symmetries are

u(X, y) = u(−X, y) = u(X, −y), (31)

v(X, y) = −v(−X, y) = −v(X, −y), (32)

�(X, y) = �(−X, y) = �(X, −y). (33)

Thus, the same symmetry-exploiting derivative matrices as used for the KdV equation can
be applied in both longitude and latitude here. The only important difference is that the
boundary conditions for large |y| are

u, v → 0, � → 1, |y| → ∞. (34)

These are imposed by omitting weights in the bottom four rows of the y-differentiation
matrices, implicitly assuming that the grid point values of all unknowns at latitudes beyond
the largest latitudinal grid point are zero.

The complication is that in fluid mechanics in general and equatorial flows in particular,
solitary and cnoidal waves are not unique without the specification of a mean [i.e., zonally
averaged] east–west current U (y). This implies that the number of extra constraints is equal
to the number of latitudinal grid points ny . Denoting the number of east–west grid points
by nx , the rectangular Jacobian matrix is of size (3nx ny + ny) × (3nx ny).

Unfortunately, a rigorous proof of this assertion is lacking. However, perturbation theory
shows that for weak mean currents, the zonally averaged flow U (y) is arbitrary—for any
mean flow, so long as it is small, one can find a solitary wave. [4, 17, 22, 23]. Without
constraints on the mean flow, our numerical computations show that the Jacobian matrix is
always singular.

Our detailed results for equatorial solitary waves are published in [13]. There we explain
why it is preferable, to produce simpler agreement with theory, to employ the modified
constraints

∫ P/2

P/4
u(X, y j ) dx = 0, j = 1, 2, . . . , ny, (35)

which were discretized using the rectangle rule.
As in the KdV case, the most efficient finite-difference strategy is deleted residuals. It is

not possible to eliminate the arbitrary mean current by any reformulation of the problem.
However, as for the KdV cnoidal wave, the imposition of symmetry on the finite-difference
method both enormously reduced cost (by a factor of four in two dimensions) and also
suppressed the translational degree of freedom.

The QR–Newton iteration was also very similar to the KdV problem: the residual of the
discretized algebraic system of equations � had a finite minimum for each set of (nx , ny),
as illustrated in Fig. 4. Also like the KdV problem, the minimum residual seems to decrease
faster with the number of grid points than does the finite-difference error.

However, there are a couple of puzzling differences. One is that the exponential decrease
of �min for the KdV cnoidal wave has been replaced by a (roughly!) tenth-order decrease.
Another difference is that on a log–log plot (not shown), the KdV �min is concave downward
whereas the residual minimum for nonlocal equatorial waves is concave upward.
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FIG. 4. Nonlocal equatorial waves. The heavy solid curve with circles is the L2 norm of the minimun residual
for a given number of east–west grid points; the number of latitudinal points is half that of the number of the
east–west points. The scale is logarithmic for both the residual and the number of grid points. Although the solution
used eight-order differences, the thin dashed line is proportional to n−10

x , which gives a better fit. The phase speed
c = −0.15411; the computational domain was X ∈ [0, 10] ⊗ Y ∈ [0, 5].

Because of the complexity and cost of the problem and also because the finite-difference/
deleted residuals method was so successful, we did not attempt to apply the Keller bordered
matrix algorithm, nor the pseudoinverse, nor did we do any pseudospectral calculations
for this problem. We conjecture, because of the similar results for the methods that we did
apply to the KdV case, that all these untested algorithms would have been performed well,
if not always rapidly, for nonlocal equatorial Rossby waves.

6. SHOCKS OF THE KORTEWEG–DEVRIES–BURGERS (KDV–BURGERS) EQUATION

The Korteweg–deVries–Burgers (KdV–Burgers) equation for steadily traveling shocks,
first proposed by Grad and Hu [16] for plasmas and by Johnson [19] for water waves, is

uxx − νux + (u/2 − c)u = 0, (36)

where c is the phase speed. Bona and Schonbek [2] prove existence and uniqueness of
the shocks. As x → ±∞ where the shocks asymptote to constants u±∞, the differential
equation collapses to (u/2 − c)u ∼ 0, which implies that the constants u±∞ must be either
0 or 2c. It is easy to show that if v(x; ν) is a shock for unit phase speed, then a shock for
general c is given by u = cv(

√
cx; ν

√
c). Thus, there is no loss in generality in specializing

to c = 1 and solving

uxx − νux + (u/2 − 1)u = 0, u → 2 as x → −∞, u → 0 as x → ∞, (37)

for ν > 0.
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The KdV–Burgers shock is translationally invariant: if u(x) is such a solution, so is
u(x + �) for arbitrary constant �. Because the shock is not symmetric with respect to
x = 0, unlike our cnoidal and solitary wave examples, it is not possible to remove the
translational eigenmode by imposing a constraint of symmetry: reformulation fails.

6.1. Numerical Methods for KdV–Burgers Shocks

We computed the shocks using four different numerical methods: fourth-order finite
differences, a Fourier pseudospectral method, and a rational Chebyshev pseudospectral
algorithm. For the finite-difference method, the domain was the truncated interval x ∈
[−xB, xB] with u(±xB) = u±∞; the domain size xB was chosen to be sufficiently large that
u at x = ±xB differs negligibly from its asymptotic limits.

The Fourier approximation consisted of (i) a linear polynomial plus (ii) an (N + 1)-term
trigonometric polynomial:

u = 2(P/2 − x)/P +
N/2∑
j=0

a j cos( j[2	/P]x) +
N/2∑
j=1

aN/2+ j sin( j[2	/P]x). (38)

In the deleted residual method, the residual was forced to be zero at a set of discrete points,
but at only N points instead of the usual (N + 1):

x j = −P/2 + ( j − 1)/(P N ), j = 1, 2, . . . , N . (39)

The constraint u(0) = 1 is imposed as the (N + 1)st element of the residual vector

N/2∑
j=0

a j = 1. (40)

This discretization gives a nonsingular system of (N + 1) algebraic equations in (N + 1)

unknowns a j .
The optimum choice of spatial period increases with N ; a larger domain is necessary for

larger N so that the errors (u(±P/2) − u±∞) at the edges of the truncated domain do not
exceed the errors in truncating the Fourier series after N . After some experimentation, we
set

P =
√

50
√

N . (41)

The rational Chebyshev method [12] is equivalent to making the change-of-coordinate

x = Lcot(t) ↔ t = arccot(x/L) (42)

and then applying a Fourier cosine pseudospectral method. The solution is approximated
by

u(x) ≈
N∑

j=0

a j cos( j t[x]). (43)
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N algebraic conditions come from collocation at the points

t j = 	
2 j − 1

2N
, x j = Lcot(t j ), j = 1, 2, . . . , N . (44)

In the deleted residuals method, the (N + 1)st condition is u(0) = 1, which in spectral
terms is

N∑
j=0

a j = 1. (45)

6.2. Spectral Upgrade

Every low order BVP-solver contains a spectral solver within it. . . . Preconditioned iterations provide a way
to promote a low order method to spectral accuracy. (J. P. Boyd [12], p. 301)

The notion of upgrading a low-order finite-difference or finite-element method to spectral
accuracy is stated most clearly in Sect. 13.6 of the book [12], but the idea is implicit in the
articles of Orszag [29] and Morchoisne [26], who independently devised the idea of solving
pseudospectral discretization matrices by finite difference–preconditioned iteration, and of
Deville and Mund [15], who showed that finite-element preconditioning worked even better.
Historically, these authors began with pseudospectral discretizations and asked: How can
we efficiently solve these dense matrix problems?

From a practical standpoint, this is looking at the telescope the wrong way around. The
most interesting question is: Given a fast-but-inaccurate finite-difference computer code,
how can it be improved, given that a spectral algorithm can achieve many more orders
of accuracy on the same grid? The answer is to replace the finite-difference evaluation of
the residual in the end game by a subroutine that evaluates the residual to pseudospectral
accuracy. In our case, we used the grid-point values of u(x) on the finite-difference grid,
computed the Fourier interpolant, and evaluated the residual at each grid point by differen-
tiation and evaluation of the Fourier series. As noted in [12], all the spectral stuff can be
isolated in a single subroutine; the Jacobian matrix is the finite-difference matrix, and the
main program knows only that a “black box” is taking the grid-point values of u as input
and returning the residual of the differential equation.

As shown by Orszag, Morchoisne, and Deville and Mund, the finite-difference or finite-
element Jacobians are sufficiently good approximations to the spectral Jacobian that the
iteration—a quasi-Newton iteration because the true Jacobian (spectral) has been replaced
by an approximation (finite difference)—still converges geometrically fast until the spectral
residual is negliglibly small. Thus, Newton’s iteration, with merely the replacement of one
residual evaluation routine by another, yields full spectral accuracy.

Spectral upgrades have not been previously applied when the underlying square matrix
is singular, nor a QR–Newton iteration that solves a rectangular matrix at each step. We
shall see below, however, that the finite-difference-to-spectral upgrade is successfull for
Korteweg–deVries–Burgers shocks.

6.3. Algorithmic Failures

For the finite-difference method and shocks, deleted residuals failed even though we
experimented with several variations. First, the residual at the central grid point, x = 0, was
replaced by the constraint u(0) = 1. Second, the grid was staggered so that the grid points
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nearest the origin were at x = ±h/2; the residual at one was replaced by the (interpolated)
condition u(0) = 1. This failed, too; the discrete solution satisfied the constraint but had
a discontinuous slope at the origin. Third, we deleted two residuals and imposed both the
condition u(0) = 0 and a condition of slope continuity at x = 0, both expressed through
interpolation formulas as accurate as those for the derivatives in the differential equation.
This did not work either.

With the pseudospectral method, one could use a grid of N points instead of (N + 1)

without complication since there is no penalty for evaluating the spectral series at an arbitrary
point. In contrast, the finite-difference methods with (N + 1) degrees of freedom could be
easily posed only on a grid of (N + 1) points, too, since the unknowns are defined as the
values of u(x) on a grid of points. In the spectral case, it was easy to squeeze the N points
together to avoid leaving the gap that was inevitable with the finite-difference method.

We applied Keller’s method, but this, too, failed. When a row and column is removed
from a generic matrix with a single zero eigenvalue, the smaller matrix is nonsingular, as
assumed by Keller’s bordered matrix scheme. (By “generic,” we mean a matrix which is
randomly chosen from the set of all matrices of a given size with a single zero eigenvalue.)
However, the finite-difference discretization of the KdV–Burgers equation is not generic,
and its upper left (N − 1) × (N − 1) block is singular, too.

This was so surprising that we checked the finite-difference discretization by successfully
applying the pseudoinverse/SVD method. The discretization was fine, but the bordered
matrix algorithm failed.

Since the pseudoinverse method is quite expensive, the cheapest successful finite-
difference method was to solve a formally overdetermined system by appending u(0) = 1
to an N -point discretization to obtain a system of (N + 1) equations in only N unknowns,
and then applying the QR–Newton iteration.

In contrast, the deleted residual strategy was successful for both spectral methods.

6.4. Errors

Figure 5 compares the errors for the first three methods. As expected, the spectral methods
are much more efficient, both in terms of fewer grid points (left panel) and computer time
(right panel). The rational Chebyshev method seems to be a little more efficient than the
Fourier algorithm, but both converge at an exponential rate with N .

Nevertheless, if one is content with a modest accuracy of a few percent, the QR finite-
difference method is competitive with the spectral methods. It is remarkable that for this
problem, the QR-overdetermined Newton iteration is the cheapest successful way with a
finite-difference discretization.

In contrast, the much less expensive deleted residual strategy was successful for the KdV
and equatorial Rossby wave problems even with a finite-difference discretization. Why the
difference? We can only speculate, but the lack of symmetry in the shock waves is probably
the culprit.

Figure 6 shows that the spectral upgrade is very effective. The left panel illustrates that for
a given number of points, the spectral upgrade is much more accurate by orders of magnitude
than the pure finite-difference program, and yet the two differ only in the single subroutine
that evaluates the residual of the differential equation (plus the constraint u(0) = 1). The
accuracy is not quite as good as the Fourier pseudospectral method for the same N ;
the residual of the spectral upgrade does not quite go to zero because there is a tiny
component of the error which is not properly preconditioned by the finite-difference
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FIG. 5. Comparison of numerical errors for computing shocks of the KdV–Burgers equation, plotted versus the
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Diamonds (upper curve in each panel): Fourth-order finite differences with QR-overdetermined Newton iteration
with xB = 25. All calculations performed using Matlab 5.2 on Apple G4 at 450 Mhz.

Jacobian. (In the usual, nonsingular case, Orszag shows that the eigenvalues of the product
of the inverse of the finite-difference matrix times the pseudospectral Jacobian is a matrix
whose eigenvalues all lie in the narrow range between 1 and 2.4, but this is not true here.)
Nevertheless, the right panel shows that for achieving a given accuracy, the spectral up-
grade is far faster than either of its “parents,” the Fourier pseudospectral method and the
fourth-order finite-difference/QR scheme.
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FIG. 6. Same as previous figure except that the TB (rational Chebyshev) pseudospectral method was replaced
by the Fourier pseudospectral upgrade of the finite-difference QR algorithm. The upgrade used the same N -
dependent domain as the Fourier pseudospectral method.
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7. CONCLUSIONS

When a naive discretization of a nonlinear eigenvalue problem is singular, additional
constraints must be appended to obtain a unique solution. The cheapest fix is to replace
residual conditions from the differential equation by the constraints. This simple-minded
deleted residuals method worked for all combinations of discretizations and test problems
except for finite-difference discretizations of shocks of the Korteweg–deVries–Burgers
equation. For that exceptional case, the best algorithm is to apply the QR factorization to a
rectangular Jacobian.

The most efficient discretization is to apply a “spectral upgrade” to a finite-difference
program. The code is identical to a pure finite-difference method except for the addition of
a single subroutine to evaluate the residual spectrally.

One novelty of this article is that spectral upgrading has never previously been applied
with rectangular matrices or QR solution of the finite-difference preconditioner. (Actu-
ally the finite-difference QR–Newton method, with or without upgrade, has never been
previously applied to singular nonlinear problems.) Fourth-order differences-with-Fourier
upgrade is the fastest algorithm for the KdV–Burgers shocks.

At least three issues remain for future research. First, it would be desirable to develop
better tools for predicting the number of constraints required for a given wave problem. Our
equatorial Rossby constraints, one per latitudinal grid point, are justified only by perturbation
theory and empirical success.

Second, there is no theory explaining either the success or the failure of the deleted
residuals strategy. For the pseudospectral algorithms, it easy to squeeze the grid so as to
leave no obvious gap. This perhaps explains why deleting residuals always works with these
algorithms though it failed for shocks with finite differences where there was a gap at the
origin, left by the residual that was replaced with the constraint u(x = 0) = 1. Speculation
and plausibility arguments are no substitute for theory, however.

Third, the preconditioned QR–Newton iteration with a Fourier upgrade did not converge
to zero residual, only to a very small residual. Although the algorithm was successful anyway
in the sense that the finite-difference-with-Fourier-upgrade for the shocks gave accuracies
that decreased exponentially with N and were only slightly less than those of the (much
slower) pure Fourier pseudospectral algorithm, it would be nice to understand why this minor
difficulty arises. Until this is understood, the spectral upgrade method for singular wave
equations must come with a mild warning sticker: fast algorithm that probably will work.

Even with these unresolved issues, it is clear that there are good methods for solving
wave problems that must be constrained, beyond the differential equations and boundary
conditions, to specify a unique solution. Pseudospectral methods and the QR–Newton iter-
ation are the most robust; finite-difference-with-spectral-upgrade and the deleted residuals
strategy are fastest.

APPENDIX: PARITY AND FINITE DIFFERENCES

To approximate derivatives for both the KdV and equatorial wave equations, we use
centered nine-point differences, which are sixth-order accurate for the third derivative of
the KdV equation, and eighth-order accurate for the first derivative KdV term and for all
derivatives of the equatorial wave equations, which contain only first derivatives. With h as
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the grid spacing, the approximations are

d f j

dx j
(x) ≈ w4 f (x + 4h) + w3 f (x + 3h) + w2 f (x + 2h) + w1 f (x + h)

− w1 f (x − h) − w2 f (x − 2h) − w3 f (x − 3h) − w4 f (x − 4h). (A.1)

The first derivative weights are

w1 = 4

5

1

h
, w2 = −1

5

1

h
, w3 = 4

105

1

h
, w4 = − 1

280

1

h
. (A.2)

The third derivative weights are

w4 = 7

240

1

h3
, w3 = − 3

10

1

h3
, w2 = 169

120

1

h3
, w1 = −61

30

1

h3
. (A.3)

(Neither of the problems studied here has even-order derivatives, but this is just a coincidence
and not intrinsic to wave equations that require additional constraints to specify unique
solutions.)

The boundary conditions in X are spatial periodicity; that is,

u(X) = u(X + P), ∀X [periodic boundary condition]. (A.4)

It is conceptually useful to visualize the interval for a periodic problem as a ring; this
mental model makes it obvious that we can apply centered differences everywhere on the
grid. Near X = P/2, where the stencil requires values of u at X > P/2, we can invoke the
periodicity to replace the missing values of u(P/2 + jh) by u(−P/2 + jh). The resulting
differentiation matrices are so-called “cyclic” matrices. These are banded matrices except
for small triangular blocks in the upper right and lower left corners [27, 31].

Because the KdV cnoidal wave is symmetric with respect to X = 0, we choose an evenly
spaced grid that spans only half the spatial period, P = 2	:

X j = 	
2 j − 1

2N
, j = 1, 2, . . . , N . (A.5)

To apply centered differences near the ends of the grid, we use symmetry and periodicity
to supply missing grid point values. Abbreviating u(X j ) by u j , symmetry with respect to
X = 0 gives

u− j = u j , j = 1, 2, 3, 4. (A.6)

Periodicity on an evenly spaced grid implies that uN+ j = u−N+ j for all j . Symmetry with
respect to the origin demands u−N+ j = uN− j . The two constraints together supply the
needed values near X = P/2:

uN+ j = uN− j , j = 1, 2, 3, 4. (A.7)

In the array below, for example, the second weight in each element is derived by these
symmetry constraints. For a nine-point grid, for either the first or third derivatives with
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appropriate w j , the differentiation matrix is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 − w1 w1 − w2 w2 − w3 w3 − w4 w4 0 0 0 0

−w1 − w2 0 − w3 w1 − w4 w2 w3 w4 0 0 0

−w2 − w3 −w1 − w4 0 w1 w2 w3 w4 0 0

−w3 − w4 −w2 −w1 0 w1 w2 w3 w4 0

−w4 −w3 −w2 −w1 0 w1 w2 w3 w4

0 −w4 −w3 −w2 −w1 0 w1 w2 w3 + w4

0 0 −w4 −w3 −w2 −w1 0 w1 + w4 w2 + w3

0 0 0 −w4 −w3 −w2 −w1 + w4 w3 w1 + w2

0 0 0 0 −w4 −w3 + w4 −w2 + w3 −w1 + w2 0 + w1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(A.8)

The matrices for larger numbers of points are similar except that additional rows, centered
on the diagonal and without boundary modifications, must be inserted in the middle.

In the equatorial problem, the north–south current v is antisymmetric with respect to
X = 0; that is,

v(−X, y) = −v(X, y), ∀X, y. (A.9)

The same differentiation matrix applies except that signs of the second weight must be
changed in each element with two weights.

In latitude, the equatorial waves also have definite parity with respect to the equator. For
large y, however, the proper boundary conditions are that all wave fields decay exponentially
to zero. This condition was imposed by simply omitting the second weight of each pair in
the four bottom rows of the latitudinal differentiation matrix, which is otherwise identical
to the east–west (X ) differentiation matrix.

As explained in the main text, parity automatically imposes the “translational” constraint,
thereby eliminating one row from the rectangular Jacobian matrix. It also has another helpful
effect: the differentiation matrices become ordinary banded matrices rather than cyclic
matrices. This reduces costs, albeit only modestly; cyclic matrices, too, can be factored
very efficiently [27, 31].
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